The Stability of Linear Feedback Systems

The issue of ensuring the stability of a closed-loop feedback system is central to
control system design. Knowing that an unstable closed-loop system is generally
of no practical value, we seek methods to help us analyze and design stable
systems. A stable system should exhibit a bounded output if the corresponding
input is bounded. This is known as bounded-input, bounded-output stability and
Is one of the main topics of this chapter.

The stability of a feedback system is directly related to the location of the roots
of the characteristic equation of the system transfer function. The Routh-
Hurwitz method is introduced as a useful tool for assessing system stability. The
technique allows us to compute the number of roots of the characteristic
equation in the right half-plane without actually computing the values of the
roots. Thus we can determine stability without the added computational burden
of determining characteristic root locations. This gives us a design method for
determining values of certain system parameters that will lead to closed-loop
stability. For stable systems we will introduce the notion of relative stability,
which allows us to characterize the degree of stability.



The Concept of Stability

A stable system is a dynamic system with a bounded response
to a bounded input.

Absolute stability is a stable/not stable characterization for a
closed-loop feedback system. Given that a system is stable
we can further characterize the degree of stability, or the
relative stability.



The Concept of Stability

N

N

(a) Stable

N

i
I

(b) Neutral (¢) Unstable

L! LI
£ £

The concept of stability can be
Illustrated by a cone placed on
a plane horizontal surface.

A necessary and
sufficient condition for a
feedback system to be
stable is that all the
poles of the system
transfer function have

negative real parts.

A system is considered marginally stable if only certain bounded
inputs will result in a bounded output.



The Routh-Hurwitz Stability Criterion

It was discovered that all coefficients of the characteristic
polynomial must have the same sign and non-zero if all
the roots are in the left-hand plane.

These requirements are necessary but not sufficient. If the
above requirements are not met, it is known that the
system is unstable. But, if the requirements are met, we
still must investigate the system further to determine the
stability of the system.

The Routh-Hurwitz criterion is a necessary and sufficient
criterion for the stability of linear systems.



The Routh-Hurwitz Stability Criterion

Characteristic equation, q(s)

Routh array

The Routh-Hurwitz criterion
states that the number of roots
of g(s) with positive real parts
IS equal to the number of
changes in sign of the first
column of the Routh array.
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The Routh-Hurwitz Stability Criterion
Case One: No element in the first column is zero.

Example 6.1 Second-order system

The Characteristic polynomial of a second-order systemis:

q(s) = a2~32 + a7-S + ag

The Routh array is written as: 2

s° |a, a,

ss1a O
w here: SO bl O

a;-ap — (0)-a,

b=
ap

Therefore the requirement for a stable second-order systemis
simply that all coefficients be positive or all the coefficients be
negative.



The Routh-Hurwitz Stability Criterion
Case Two: Zeros in the first column while some elements of
the row containing a zero in the first column are nonzero.

if only one element in the array is zero, it may be replaced w ith a small positive
number ¢ that is allow ed to approach zero after completing the array.

q(s) = s+ 25% + 263 4 4s% + 11s + 10

The Routh array is then:

11 2 1
s*12 4 10
(b, 6 0
s*|c 10 O
s'|d, 0 O
110 0 O
w here:
bl=2-2—1-4=O=8 C1=4g—2-6=—12 d1=6-01—108=6
2 e £ C1

There are two sign changes in the first column due to the large negative number
calculated for cl1. Thus, the systemis unstable because two roots lie in the
right half of the plane.



The Routh-Hurwitz Stability Criterion
Case Three: Zeros in the first column, and the other elements
of the row containing the zero are also zero.

This case occurs when the polynomial q(s) has zeros located sy metrically about the
origin of the s-plane, such as (s+c)(s-c) or (s+w)(s-j). This case is solved using
the auxiliary poly nomial, U(s), w hich is located in the row above the row containing
the zero entry in the Routh array.

q(s) = s>+ 25%+4s + K

Routh array: SS 1 4
s> | 2 K
st | &K 0
s | K 0

For a stable systemwe require that 0<s <8

For the marginally stable case, K=8, the s*1 row of the Routh array contains all zeros. The
auxiliary plynomial comes fromthe s*2 row.

U(s) = 25% + Ks’ = 2.s% + 8= As? + 4) = 2As + (s - J2)

it can be proven that U(s) is a factor of the characteristic polynomial:

U(s) 2 Thus, w hen K=8, the factors of the characteristic polynomial are:

q(s) = (s + (s + j2A(s - j-2)



The Routh-Hurwitz Stability Criterion

Case Four: Repeated roots of the characteristic equation on
the jw-axis.

With simple roots on the jw-axis, the system will
have a marginally stable behavior. This is not
the case if the roots are repeated. Repeated roots
on the jw-axis will cause the system to be
unstable. Unfortunately, the routh-array will fail
to reveal this instability.



Example

A completely integrated, six-legged, micro robot system. The six-legeed design provides
maximum dexterity. Legs also provide a unique sensory system for environmental
interaction. It is equipped with a sensor network that includes 150 sensors of 12 different
types. The legs are instrumented so that the robot can determine the lay of the terrain, the
surface texture, hardness, and even color. The gyro-stabilized camera and range finder can
be used for gathering data beyond the robot’s immediate reach. This high-performance
system is able to walk quickly, climb over obstacles, and perform dynamic motions.
(Courtesy of IS Robotics Corporation. )



Example : Welding control

T Kis + a) I
(s + 1 sty + 2y + 3

Welding head position control.

. _ _ _ 4 .3 2
Using block diagram reduction we find that: qis) = s + s~ + 115"+ (K + f)s + Ka

The Routh array is then: g4 1 11 Ka
s° 6 (K +6)
s b, Ka
s' C,
s’ Ka
_ ba(K + 6) — 6-Ka
where: b;= 00— K and c3= a )
6 b3

For the sysem to be stable bothy;and c; must be positive.

Using these equations a relationship can be determined for K ai



The Relative Stability of Feedback Control Systems

It is often necessary to know the

relative damping of each root to

the characteristic equation. A

Relative system stability can be

measured by observing the —
relative real part of each root. In

this diagram r2 is relatively more &

stable than the pair of roots P
labeled rl.
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One method of determining the relative stability of
each root is to use an axis shift in the s-domain and
then use the Routh array as shown in Example 6.6 of
the text.



Design Example: Tracked Vehicle Turning Control

Problem statement: Design the turning control for a tracked
vehicle. Select K and a so that the system is stable. The
system is modeled below.
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Design Example: Tracked Vehicle Turning Control
The characteristic equation of this system is:
1+ GyG(s)=0

or

K(s + a) _
s(s+ 1)(s +2)(s +5)

Thus,
s(s+D(s+2(s+5 +K(s+a)=0

or
4 3 2
S +8 +16 "+ (K+10s+ Ka=0

To determine a stable region for the system, we establish the Routh arre

s 1 17 Ka
s 8 (K +10) 0
s’ b, Ka
st C,
s? Ka
where
126 — K ba(K + 10) — 8Ka
b3 = and C3=

8 bs



Design Example: Tracked Vehicle Turning Control

s’ 1 17 Ka
s® 8 (K +10) 0
s° b, Ka
s' C,
s’ Ka
where
126 — K bs(K + 10) — 8Ka
bz = and C3=
8 by
Therefore,
K< 126
K-a>0

(K + 10)(126 — K) — 64Ka > 0

o

3.0

Stable
region

// Selected K and a
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|
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System Stability Using MATLAB

(!lt\] =

l

PG+ 5425423 >

==numg=[1]; deng=[1 1 2 23]; sysg=ti{numg.deng);

Closed-loop control system with 7{s) = ¥F{s J/R{s) = 1/ i3+ 52

2nd sign change
+ 2 &

lst sign change

§3 l 2
52 l 24
g —22 0
50 24 0

==sys=feedbackisysa.[1]);
>>pole(sys)

dns =

-3.0000
1.0000 + 2.6458i
1.0000 - 2.6458i

Unstable poles




System Stability Using MATLAB
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% Thiz script computss the roolks of e characternistic
Y equalicon qis] =53+ 2 52 +4 5 + K for O=K=<20

-
Ko=[0: 0.5:20]; )
i=1:langthik)
g=[1 24 Ki{i]];
pi . il=moctslq);

Loop for moois as
a Function of &

plotirealip) imaaip).'="), grid
xlabk=li'Real axiz'l, ylak=l{"lmaginary axis')
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System Stability Using MATLAB

Loop

The end statement
must be included to
indicale the end of
the loop.

Creneral format

variable=expression

statemeant

statement

Exarmple

i=1:10 Counter §
ain=20.
b=aii}+2; @ is o vector
with 10 elements.

A is a scalar that
changes as / increments.

The for function and an illustrative example.



System Stability Using MATLAB
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twotrackstable.m

% The a-K stability regicon for the two track vehicle

% control protlem

kS

a=[0.1:0.01:3.0]; K=[20:1:120];

K:G'K; }":':l'K;

n=lengthik); m=lengthia);

fari=1:n

far j=1:m i} o
a=[1, 8, 17, Kii)}+1 0, K(ij"a(j] SRR
p=roots(i): polynomial
if maxirealph = 0, xii=Kii); yiii=alj-1); break; end

end

end

platix,y), grid, xabel'K'), yakela')

u)]

Range of @ and &

Initialize plot vectors as zero
vectors of appropriate lengths.

For a given value of £ determing
first value of g for instability.

(a) Stability region for ¢ and A for two-track vehicle tuming control.

(b) Marran script.



