
The issue of ensuring the stability of a closed-loop feedback system is central to 

control system design. Knowing that an unstable closed-loop system is generally 

of no practical value, we seek methods to help us analyze and design stable 

systems. A stable system should exhibit a bounded output if the corresponding 

input is bounded. This is known as bounded-input, bounded-output stability and 

is one of the main topics of this chapter.  

The stability of a feedback system is directly related to the location of the roots 

of the characteristic equation of the system transfer function. The Routh–

Hurwitz method is introduced as a useful tool for assessing system stability. The 

technique allows us to compute the number of roots of the characteristic 

equation in the right half-plane without actually computing the values of the 

roots. Thus we can determine stability without the added computational burden 

of determining characteristic root locations. This gives us a design method for 

determining values of certain system parameters that will lead to closed-loop 

stability. For stable systems we will introduce the notion of relative stability, 

which allows us to characterize the degree of stability.  

 The Stability of Linear Feedback Systems 

 



The Concept of Stability 

A stable system is a dynamic system with a bounded response 

to a bounded input. 

Absolute stability is a stable/not stable characterization for a 

closed-loop feedback system.  Given that a system is stable 

we can further characterize the degree of stability, or the 

relative stability. 



The Concept of Stability 

The concept of stability can be 

illustrated by a cone placed on 

a plane horizontal surface. 

A necessary and 

sufficient condition for a 

feedback system to be 

stable is that all the 

poles of the system 

transfer function have 

negative real parts. 

A system is considered marginally stable if only certain bounded 

inputs will result in a bounded output. 



The Routh-Hurwitz Stability Criterion 

It was discovered that all coefficients of the characteristic 

polynomial must have the same sign and non-zero if all 

the roots are in the left-hand plane. 

These requirements are necessary but not sufficient.  If the 

above requirements are not met, it is known that the 

system is unstable.  But, if the requirements are met, we 

still must investigate the system further to determine the 

stability of the system. 

The Routh-Hurwitz criterion is a necessary and sufficient 

criterion for the stability of linear systems. 



The Routh-Hurwitz Stability Criterion 
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Routh array 

The Routh-Hurwitz criterion 

states that the number of roots 

of q(s) with positive real parts 

is equal to the number of 

changes in sign of the first 

column of the Routh array. 



The Routh-Hurwitz Stability Criterion 

Case One:  No element in the first column is zero. 

 
Example 6.1 Second-order system

The Characteristic polynomial of  a second-order sys tem is:

q s( ) a2 s
2

 a1 s a0

The Routh array is written as:

w here:

b1

a1 a0 0( ) a2

a1

a0

Therefore the requirement for a stable second-order system is 

simply that all coef f icients be positive or all the coef ficients be 

negative.
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The Routh-Hurwitz Stability Criterion 

Case Two:  Zeros in the first column while some elements of 

the row containing a zero in the first column are nonzero. 

 If  only one element in the array is zero, it may be replaced w ith a small positive 

number  that is allow ed to approach zero after completing the array.

q s( ) s
5

2s
4

 2s
3

 4s
2

 11s 10

The Routh array is then:

w here:

b1

2 2 1 4

2
0  c1

4 2 6



12


d1

6 c1 10

c1

6

There are two sign changes in the first column due to the large negative number 

calculated for c1.  Thus, the system is unstable because two roots lie in the 

right half  of  the plane. 
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The Routh-Hurwitz Stability Criterion 

Case Three:  Zeros in the first column, and the other elements 

of the row containing the zero are also zero. 

 This case occurs when the polynomial q(s) has zeros located symetrically about the 

origin of  the s-plane, such as (s+)(s -) or (s+j)(s -j).  This case is solved using 

the auxiliary polynomial, U(s), w hich is located in the row above the row  containing 

the zero entry in the Routh array.

q s( ) s
3

2 s
2

 4s K

Routh array:

For a stable system we require that 0 s 8

For the marginally stable case, K=8, the s^1 row  of the Routh array contains all zeros.  The 

auxiliary plynomial comes f rom the s^2 row. 

U s( ) 2s
2

Ks
0

 2 s
2

 8 2 s
2

4  2 s j 2( ) s j 2( )

It can be proven that U(s) is a factor of  the characteris tic polynomial:

q s( )

U s( )

s 2

2 Thus, w hen K=8, the factors of the characteristic polynomial are:

q s( ) s 2( ) s j 2( ) s j 2( )
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The Routh-Hurwitz Stability Criterion 

Case Four:  Repeated roots of the characteristic equation on 

the jw-axis. 

 

With simple roots on the jw-axis, the system will 

have a marginally stable behavior.  This is not 

the case if the roots are repeated.  Repeated roots 

on the jw-axis will cause the system to be 

unstable.  Unfortunately, the routh-array will fail 

to reveal this instability. 



Example  



Example : Welding control 

Using block diagram reduction we find that: 

The Routh array is then: 

Kas

cs

Kabs

Ks

Kas

0

3

1
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2

3

4

)6(6

111



For the system to be stable bothb3 and c3 must be positive.

Using these equations a relationship can be determined for K and a .

where: b3

60 K

6
and c3

b3 K 6( ) 6 Ka

b3



The Relative Stability of Feedback Control Systems 

It is often necessary to know the 

relative  damping of each root to 

the characteristic equation.  

Relative system stability can be 

measured by observing the 

relative real part of each root.  In 

this diagram r2 is relatively more 

stable than the pair of roots 

labeled r1. 

One method of determining the relative stability of 

each root is to use an axis shift in the s-domain and 

then use the Routh array as shown in Example 6.6 of 

the text. 



Problem statement:  Design the turning control for a tracked 

vehicle.  Select K and a so that the system is stable.  The 

system is modeled below.   

Design Example: Tracked Vehicle Turning Control 



The characteristic equation of this system is:

1 Gc G s( ) 0

or 

1
K s a( )

s s 1( ) s 2( ) s 5( )
 0

Thus,

s s 1( ) s 2( ) s 5( ) K s a( ) 0

or 

s
4

8s
3

 17s
2

 K 10( )s Ka 0

To determine a stable region for the system, we establish the Routh array as:

where 

b3

126 K

8
and c3

b3 K 10( ) 8Ka

b3
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

Design Example: Tracked Vehicle Turning Control 
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Design Example: Tracked Vehicle Turning Control 

where 

b3

126 K

8
and c3

b3 K 10( ) 8Ka

b3

Therefore,

K 126

K a 0

K 10( ) 126 K( ) 64Ka 0



System Stability Using MATLAB 



System Stability Using MATLAB 



System Stability Using MATLAB 



System Stability Using MATLAB 


